

CITY OF SOUTH GATE 2022 PUBLIC HEALTH GOALS REPORT

JUNE 2022

2022 Public Health Goals (PHGs) Report

City of South Gate

1.0 Introduction

Under the Calderon-Sher Safe Drinking Water Act of 1996 public water systems in California serving greater than 10,000 service connections must prepare a report containing information on 1) detection of any contaminant in drinking water at a level exceeding a Public Health Goal (PHG), 2) estimate of costs to remove detected contaminants to below the PHG using Best Available Technology (BAT), and 3) health risks for each contaminant exceeding a PHG. This report must be made available to the public every three years. The initial PHGs Report was due on July 1, 1998, and subsequent reports are due every three years thereafter.

The 2022 PHGs Report has been prepared to address the requirements set forth in Section 116470 of the California Health and Safety Code. It is based on water quality analyses during calendar years 2019, 2020, and 2021 or, if certain analyses were not performed during those years, the most recent data is used. The 2022 PHGs Report has been designed to be as informative as possible, without unnecessary duplication of information contained in the Consumer Confidence Report (also known as Water Quality Report), which was mailed to customers by July 1st of each year.

There are no regulations explaining requirements for the preparation of PHGs reports. A workgroup of the Association of California Water Agencies (ACWA) Water Quality Committee has prepared suggested guidelines for water utilities to use in preparing PHGs reports. The ACWA guidelines were used in the preparation of this 2022 PHGs Report. These guidelines include tables of cost estimates for BAT. The State of California (State) provides ACWA with numerical health risks and category of health risk information for contaminants with PHGs. This health risk information is appended to the ACWA guidelines.

2.0 California Drinking Water Regulatory Process

California Health and Safety Code Section 116365 requires the State to develop a PHG for every contaminant with a primary drinking water standard or for any contaminant the State is proposing to regulate with a primary drinking water standard. A PHG is the level of a contaminant in drinking water that poses no significant health risk if consumed for a lifetime. The process of establishing a PHG is a risk assessment based strictly on human health considerations. PHGs are recommended targets and are not required to be met by any public water system.

The State office designated to develop PHGs is the California Environmental Protection Agency's Office of Environmental Health Hazard Assessment (OEHHA). The PHG is

then forwarded to the State Water Resources Control Board, Division of Drinking Water (DDW) for use in revising or developing a Maximum Contaminant Level (MCL) in drinking water. The MCL is the highest level of a contaminant that is allowed in drinking water. State MCLs cannot be less stringent than federal MCLs and must be as close as is technically and economically feasible to the PHGs. DDW is required to take treatment technologies and cost of compliance into account when setting an MCL. Each MCL is reviewed at least once every five years.

Two radiological contaminants (gross alpha particle and gross beta particle) have MCLs but do not yet have designated PHGs. For these contaminants, the Maximum Contaminant Level Goal (MCLG), the federal U.S. Environmental Protection Agency (USEPA) equivalent of PHGs, is used in the 2022 PHGs Report.

3.0 Identification of Contaminants

Section 116470(b)(1) of the Health and Safety Code requires public water systems serving more than 10,000 service connections to identify each contaminant detected in drinking water that exceeded the applicable PHG. Section 116470(f) requires the MCLG to be used for comparison if there is no applicable PHG.

The City of South Gate (City) water system has approximately 14,289 service connections. The following constituents were detected at one or more locations within the drinking water system at levels that exceeded the applicable PHGs or MCLGs:

- **Arsenic** naturally-occurring in local groundwater
- Gross alpha particle activity (gross alpha) naturally-occurring in local groundwater
- **Tetrachloroethylene** (PCE) industrial contamination in local groundwater
- Trichloroethylene (TCE) industrial contamination in local groundwater
- **Uranium** naturally-occurring in local groundwater.

The accompanying table shows the applicable PHG or MCLG and MCL for each contaminant identified above. The table includes the maximum, minimum, and average concentrations of each contaminant in drinking water supplied by the City in calendar years 2019 through 2021.

4.0 Numerical Public Health Risks

Section 116470(b)(2) of the Health and Safety Code requires disclosure of the numerical public health risk, determined by OEHHA, associated with the MCLs, PHGs and MCLGs. Available numerical health risks developed by OEHHA for the contaminants identified above are shown on the accompany table. Only numerical risks associated with cancer-causing chemicals have been quantified by OEHHA.

Arsenic – OEHHA has determined the theoretical health risk associated with the PHG is 1 excess case of cancer in a million people. USEPA has determined the risk

associated with the MCL is 2.5 excess cases of cancer in 1,000 people exposed over a 70-year lifetime.

Gross Alpha – OEHHA has not established a PHG. USEPA has established an MCLG of 0. USEPA has determined the risk associated with the MCL is 1 excess case of cancer in 1,000 people over a lifetime exposure.

PCE – OEHHA has determined the theoretical health risk associated with the PHG is 1 excess case of cancer in a million people. USEPA has determined the risk associated with the MCL is 8 excess cases of cancer in 100,000 people exposed over a 70-year lifetime.

TCE – OEHHA has determined the theoretical health risk associated with the PHG is 1 excess case of cancer in a million people. USEPA has determined the risk associated with the MCL is 3 excess cases of cancer in a million people exposed over a 70-year lifetime.

Uranium – OEHHA has determined the theoretical health risk associated with the PHG is 1 excess case of cancer in a million people. USEPA has determined the risk associated with the MCL is 5 excess cases of cancer in 100,000 people exposed over a 70-year lifetime.

5.0 Identification of Risk Categories

Section 116470(b)(3) of the Health and Safety Code requires identification of the category of risk to public health associated with exposure to the contaminant in drinking water, including a brief, plainly worded description of those terms. The risk categories and definitions for the contaminants identified above are shown on the accompanying table.

6.0 Description of Best Available Technology

Section 116470(b)(4) of the Health and Safety Code requires a description of the BAT, if any is available on a commercial basis, to remove or reduce the concentrations of the contaminants identified above. The BATs are shown on the accompanying table.

7.0 Costs of Using Best Available Technologies and Intended Actions

Section 116470(b)(5) of the Health and Safety Code requires an estimate of the aggregate cost and cost per customer of utilizing the BATs identified to reduce the concentration of a contaminant to a level at or below the PHG or MCLG. In addition, Section 116470(b)(6) requires a brief description of any actions the water purveyor intends to take to reduce the concentration of the contaminant and the basis for that decision.

The City operates one Spray Aeration Treatment System installed in the South Gate Park Reservoir for the treatment of PCE and TCE detected in the local groundwater.

Arsenic – The BATs for removal of arsenic in water for large water systems are: activated alumina, coagulation/filtration, electrodialysis, ion exchange, lime softening, oxidation/filtration, and reverse osmosis. Arsenic was detected above the PHG in the local groundwater. The City is in compliance with the MCL for arsenic. The estimated cost to reduce arsenic levels in local groundwater to below the PHG of 0.004 microgram per liter (μ g/l) using ion exchange was calculated. Because the DDW detection limit for purposes of reporting (DLR) for arsenic is 2 μ g/l, treating arsenic to below the PHG level means treating arsenic to below the DLR of 2 μ g/l. There are numerous factors that may influence the actual cost of reducing arsenic levels to the PHG. Achieving the water quality goal for arsenic could be approximately \$6,410,000 per year, or \$448 per service connection per year.

Gross Alpha and Uranium – The only BAT for the removal of gross alpha in water for large water systems is reverse osmosis, which can also remove uranium, if detected. Gross alpha was detected above the MCLG in the local groundwater. Uranium was detected above the PHG in the local groundwater. The cost of providing treatment using reverse osmosis to reduce gross alpha levels in local groundwater to the MCLG of 0 picoCurie per liter (pCi/l) (and consequently uranium in local groundwater below the PHG) was calculated. Because the DLR for gross alpha is 3 pCi/l, treating gross alpha to 0 pCi/l means treating it to below the DLR of 3 pCi/l. Achieving the water quality goal for gross alpha could range from \$1,440,000 to \$12,300,000 per year, or between \$101 and \$864 per service connection per year.

PCE and TCE – The BATs for removing PCE and TCE in water are granular activated carbon (GAC) and packed tower aeration (PTA). PCE and TCE were detected above their respective PHGs in the local groundwater and above the PHG for PCE in the treated water from the City's Spray Aeration Treatment System. The City is in compliance with the MCL for PCE and TCE. The estimated cost to treat PCE and TCE in the local groundwater to below the PHG of 0.06 μ g/l using PTA was calculated. Because the DLR for PCE and TCE is 0.5 μ g/l, treating PCE and TCE to below their respective PHGs means treating PCE and TCE to below the DLR of 0.5 μ g/l. There are numerous factors that may influence the actual cost of treating PCE and TCE levels to their respective PHGs. Achieving the water quality goal for PCE and TCE using PTA could range from \$751,000 to \$1,990,000 per year, or between \$53 and \$139 per household per year.

All Contaminants – In addition, a cost estimate to treat all water produced by the City using PTA and reverse osmosis to remove all the contaminants detected above the PHGs or MCLGs was calculated. All the contaminants listed in the accompanying table may be removed to non-detectable levels by PTA and reverse osmosis. As shown on the accompanying table, achieving the water quality goals for all contaminants using PTA and reverse osmosis could range from \$3,260,000 to \$23,400,000 per year, or between \$228 and \$1,641 per service connection per year.

2022 PUBLIC HEALTH GOALS REPORT CITY OF SOUTH GATE

	UNITS	PHG			CONCENTRATION		CATEGORY	CANCER RISK	CANCER	BEST	AGGREGATE	COST PER
PARAMETER	OF	OR	MCL	DLR	VALUE	RANGE	OF	AT PHG	RISK	AVAILABLE	COST	HOUSEHOLD
	MEASUREMENT	(MCLG)*					RISK	OR MCLG	AT MCL	TECHNOLOGIES	PER YEAR	PER YEAR
INORGANIC CHEMICALS												
Arsenic	μg/l	0.004	10	2	2	ND - 5.5	С	1 x 10 ⁻⁶	2.5 x 10 ⁻³	AA,C/F,E,IE,LS,O/F,RO	\$6,410,000 (a)	\$448 (a)
	7.5											
ORGANIC CHEMICALS												
Tetrachloroethylene (PCE)	μg/l	0.06	5	0.5	0.52	ND - 4.5	С	1 x 10 ⁻⁶	8 x 10 ⁻⁵	GAC, PTA	\$751,000 - \$1,990,000 (b)	\$53 - \$139 (b)
Trichloroethylene (TCE)	μg/l	1.7	5	0.5	0.53	ND - 2.3	С	1 x 10 ⁻⁶	3 x 10 ⁻⁶	GAC, PTA		
RADIOLOGICAL									_			
Gross Alpha Particle Activity	pCi/l	(0)	15	3	ND	ND - 6.5	С	0	1 x 10 ⁻³	RO	\$1,440,000 - \$12,300,000 (c)	\$101 - \$864 (c)
Uranium	pCi/l	0.43	20	1	2.4	ND - 4.1	С	1 x 10 ⁻⁶	5 x 10 ⁻⁵	IE, RO, LS,C/F		
ALL CONTAMINANTS										PTA and RO	\$3,260,000 - \$23,400,000 (d)	\$228 - \$1,641 (d)

^{*} MCLGs are shown in parentheses. MCLGs are provided only when no applicable PHG exists.

RISK CATEGORIES

C (Carcinogen) = A substance that is capable of producing cancer.

NOTES

PHG = Public Health Goal

MCL = Maximum Contaminant Level

MCLG = Maximum Contaminant Level Goal

ND = Not Detected

ug/l = micrograms per liter or parts per billion

pCi/I = picoCuries per liter

DLR = Detection Limit for Purposes of Reporting

- (a) Estimated cost to remove arsenic using IE.
- (b) Estimated cost to remove PCE and TCE using PTA.
- (c) Estimated cost to remove gross alpha particle activity using RO, which also removes uranium.
- (d) Assuming treating the entire production by PTA and RO, which can remove all contaminants listed in the above table to below the detectable levels.

TREATMENT TECHNOLOGIES

AA = Activated Aluminum

C/F = Coagulation/Filtration

E = Electrodialysis

GAC = Granular Activated Carbon

IE = Ion Exchange

LS = Lime Softening

O/F = Oxidation/Filtration

PTA = Packed Tower Aeration

RO = Reverse Osmosis